• Deep Knowledge
    A diver swims by Jarvis Coral in the Mariana Islands, Guam.

    Photograph courtesy of the United States Fish and Wildlife Service

    High Stress

    Dr. Douglas Bartlett says that one of his most important responsibilities on the DEEPSEA CHALLENGE team was making sure the samples collected on the expedition were preserved.

    “I helped to make sure that we collected what we could during the expedition, that we processed that material appropriately and that we got it back in the proper state. Some things had to be brought back frozen. Some things had to be brought back pressurized and chilled.”

    By Stuart Thornton

    Sunday, December 1, 2013

    Back on March 26, 2012, National Geographic Explorer-in-Residence James Cameron piloted a submersible nearly 11 kilometers (7 miles) down to the Challenger Deep, the deepest known part of the ocean. While that feat generated excitement around the world, enthusiasm continues to grow within the scientific community as the initial findings from the expedition are released.
     
    Cameron’s expedition, the DEEPSEA CHALLENGE, actually explored two ocean trenches: the Challenger Deep and the Sirena Deep in the Mariana Trench (both southwest of Guam), and the New Britain Trench (south of Papua New Guinea).
     
    Almost a year later, scientists have had time to study video and samples collected on the expedition.
     
    “People here at Scripps [Institution of Oceanography] and elsewhere at the University of Hawaii have looked over that video data just to see what they can identify and what is happening with regard to biodiversity in the New Britain Trench and in the Challenger Deep,” says marine microbiologist and DEEPSEA CHALLENGE Chief Scientist Dr. Douglas Bartlett.
     
    Bartlett notes that the New Britain Trench was rich in biodiversity—including spoon worms, acorn worms, cutthroat eels, rattail fish, eelpouts, and the deepsea lizardfish. He also describes sea anemones that look like white flowers, attached to a trench wall 8 kilometers (5 miles) down. The expedition also documented amphipods, a kind of crustacean, as long as 17 centimeters (6.7 inches).
     
    “That is the deepest example of this phenomenon, referred to as gigantism, ever seen,” Bartlett says.
     

    It’s Lonely at the Bottom
     
    Far fewer organisms populate the Challenger Deep.
     
    “You look at the video from Jim’s deep dive to the Challenger Deep, and it’s dramatically different,” Bartlett says. “In the Challenger Deep, unlike the New Britain Trench, we’re not seeing worm trails all over the place . . .  It’s a really forlorn, alien-like environment.”
     
    Among the few, hardy species in the Challenger Deep are amphipods, a possible new species of sea cucumber, and single-celled organisms known as xenophyophores.
     
    “[Xenophyophores] just look like these crinkly little globs on the seafloor,” Bartlett says. “But they are incredible organisms, because they are among the largest single-celled organisms on the planet.”
     
    Dr. Paul Yancey, a biologist at Whitman College in Walla Walla, Washington, made a striking discovery while doing laboratory work on some of the amphipods collected on the expedition.
     
    “[Dr. Yancey] found in the deep-sea amphipods from the Challenger Deep this compound, scyllo-inositol, that it turns out is currently being fast-tracked by the FDA [U.S. Food and Drug Administration] for the 
    treatment of Alzheimer’s disease,” Bartlett says.
     
    Another exciting find was made while astrobiologist and National Geographic Emerging Explorer Kevin Hand was viewing video of the Sirena Deep dive. Hand discovered rocks covered in microbial mats—sheets of tiny organisms.
     
    Dr. Patricia Fryer, a marine geologist and member of the DEEPSEA CHALLENGE team, explains the discovery.
     
    “The primary thing that caught all of our attention was the fact that . . . there are actual outcroppings right on the inner trench wall at 10,800 meters [35,433 feet], mantle rock that had interacted with seawater and created the sort of processes that could seed microbial life,” Fryer says.
     
    These deep-ocean chemical reactions could have been instrumental to the origin of life on Earth.
     
    “We are thinking now about the possibilities and places on the earth where life may have evolved,” Fryer says. “Some geologists are very excited about the ocean ridges, because everyone is seeing black smokers and all of the ecology that surrounds them. That is what has started people thinking about the oceans, the deep oceans, as a place where life may have evolved.”
     

    Protecting Our Future as well as the Past
     
    Deep-sea trenches like the Challenger Deep may hold important information for our future as well as our shared past. Learning about the trenches could help people to better protect coastal communities during tsunamis.
     
    DEEPSEA CHALLENGE research may “help modeling of tsunami genesis during earthquakes,” Fryer says.
     
    Tsunamis form from earthquakes on the seafloor. Modeling such “tsunami genesis” may be tremendously helpful for people being able to predict not only the potential run-up of the tsunami, she continues, but the direction in which it might be most focused.
     
    Both Fryer and Bartlett are very excited about the possibility of another DEEPSEA CHALLENGE mission to further explore these deep-sea trenches. Bartlett hopes to collect more samples in the future—possibly sea cucumbers, the material around cold seep environments, or the remains of a large vertebrate on the ocean floor—if one is found.
     
    Meanwhile, Fryer hopes to learn more about the extent of the deep-sea chemical reactions and the processes that formed Earth’s lithosphere, the rocky, outermost shell of our planet.
     
    “Keep in mind that these great trenches, these environments deeper than 6 kilometers, are almost unexplored,” Bartlett says, “and they represent an amount of area that is equivalent to that of pretty much the continental United States.”
  • Term Part of Speech Definition Encyclopedic Entry
    Alzheimer's disease Noun

    brain disease characterized by confusion, disorientation, and memory failure.

    amphipod Noun

    aquatic animal (crustacean) similar to shrimp.

    astrobiologist Noun

    person who studies the possibility of life in outer space.

    biodiversity Noun

    all the different kinds of living organisms within a given area.

    Encyclopedic Entry: biodiversity
    biologist Noun

    scientist who studies living organisms.

    biomass Noun

    living organisms, and the energy contained within them.

    black smoker Noun

    type of ocean vent that ejects black mineral fluid (not smoke) into the surrounding water.

    Challenger Deep Noun

    deepest measured point in the ocean (part of the Mariana Trench), about 11,000 meters (36,198 feet), located in the South Pacific Ocean.

    cold seep Noun

    marine environment where hydrogen sulfide and methane seep up from beneath the seafloor and mix with the ocean water.

    compound Noun

    substance having at least two chemical elements held together with chemical bonds.

    crustacean Noun

    type of animal (an arthropod) with a hard shell and segmented body that usually lives in the water.

    DEEPSEA CHALLENGE Noun

    ongoing expedition to study the deepest point in the ocean, with a record-breaking descent to the Challenger Deep in March 2012.

    earthquake Noun

    the sudden shaking of Earth's crust caused by the release of energy along fault lines or from volcanic activity.

    ecology Noun

    branch of biology that studies the relationship between living organisms and their environment.

    Encyclopedic Entry: ecology
    Emerging Explorer Noun

    an adventurer, scientist, innovator, or storyteller recognized by National Geographic for their visionary work while still early in their careers.

    evolve Verb

    to develop new characteristics based on adaptation and natural selection.

    expedition Noun

    journey with a specific purpose, such as exploration.

    Explorer-in-Residence Noun

    pre-eminent explorers and scientists collaborating with the National Geographic Society to make groundbreaking discoveries that generate critical scientific information, conservation-related initiatives and compelling stories.

    FDA adjective, noun

    (Food and Drug Administration) United States government agency responsible for "protecting the public health by assuring the safety, efficacy and security of human and veterinary drugs, biological products, medical devices, our nation’s food supply, cosmetics, and products that emit radiation."

    forlorn Adjective

    lonely and sad.

    genesis Noun

    origin or beginning.

    geologist Noun

    person who studies the physical formations of the Earth.

    gigantism Noun

    unusually great development in size.

    hardy Adjective

    strong or able to withstand severe weather.

    initial Adjective

    first.

    lithosphere Noun

    outer, solid portion of the Earth. Also called the geosphere.

    Encyclopedic Entry: lithosphere
    magnitude adjective, noun

    relative size or amount.

    microbial Adjective

    having to do with very small organisms.

    modeling Noun

    representation of a process, concept, or system, often created with a computer program.

    ocean trench Noun

    a long, deep depression in the ocean floor.

    Encyclopedic Entry: ocean trench
    phenomenon Noun

    an unusual act or occurrence.

    scyllo-inositol Noun

    chemical compound (sugar) produced naturally by some plants.

    seafloor Noun

    surface layer of the bottom of the ocean.

    submersible Noun

    small submarine used for research and exploration.

    tsunami Noun

    ocean waves triggered by an earthquake, volcano, or other movement of the ocean floor.

    xenophyophore Noun

    single-celled organism (protist) found throughout the ocean.

Tell us what you think